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A THEORETICAL STUDY OF THE AERODYNAMICS OF SLENDER

CRUCIFORM-WING ARRANGEMENTS AND THEIR WAKES ‘

By JOHN R. SPREITERand ALVIN H. SACKS

SUMMARY

A thearetid study ‘ivmade of 8ome cruciform-wing arrange-
ments and th& wakee by meanx of 8knder-body theory. The
basic i.deus of this theory are retied and e@io.n8 are de-
velopedfor the preiwurt%?,lmo%ags, and form on slender &-
form winge and wing-body combitiim.s. The rollingmp of
the zortex sheet behind a slender cruci/ormwing ~ con.&iered
at l-mgth wtd a numerhl andyti w carried out wing 40
vortietx to calculate the wake ehape a$vaxiom dtituncm behind
an egual-span cruciform wing & .&” bank. Aw@ical ez-
pre.wiona are dmeloped for the cmwponding positti of
the rohdkp vortea eheete using a d-vortt?xapproxirnd6n to
the wake, and thxe poei$ion4 are compared with the povitione
of thecentroiclsof vorticiiyrasulti~fiom thenumerical andyti.
The agreementis found to be remarkably good at all di.stam.w
behind the wing.

Photographs of the wake w obserwd in a water i!unk are
presentedfor varioua distances behimi a cruciform &ng a$ 0°
and .@ bank. For 4./Pbank, the dtitanze behind the wi~
at which the upper two eortice.spa-w between the lower two ix
mea.wred experinwntully and ti found to agree well with the
J-vorta analyeie.

l’le calculation of loade on cruciform hi% is conmlikredin
some detml by the method of reversej?ow, and equations are
developedfor ti tail loads in term of the vortec POW2WTM
cakulated in th8 earlier ana.lyees.”

INTRODUCTION

The importance of the rolling-up of the vortm sheet in
determining the downwash behind slender wings is now
generally recognized and has been discussed at some length
in referenea 1. The current use of cruciform wings has
caused the missile designer further concern regarding the
downwash field in the vicinity of the tail. Such ealcnlations
are generally considerably more complicated than those for
planar m“ngs. However, since the wings on missiles of this
type are generally of low aspect ratio and the td lengths
aro long, it is often assumed that the vortex shed shed from
each panel of a cruciform @ is completely rolled up into a
single vortex line at the tail position. One of the purposes
of this paper is to investigate the usefulness of such an ap-
pro.simation at various distances behind the wing. This wdl

1EIJPEIWMNAOA TN 3S23byJobnR. sPreIt.erOIMAlvlnH. SaQk$1%8.

be accomplished by comparing the results of an analytic
study of the behavior of a 4vortex model with the results of
a numerical computation for a corresponding 40-vortex
system and with observations of experiments conducted in a
water tank.

The calculation of the pressures, loadings, and forces on
cruciform wing-body combinations without regard to the
wake will be treated early in tie analysis, and a later section
will be devoted to the calculation of the loads on a cruciform
tail M the presence of the vortex wake.
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PRINCIPALSYMBOLS

aspect ratio
body radius
span of equal-span cruciform, 280

L
qs=

L’
&

pressure coefficient,’+

Y
~v

Y’
qs9’

wing chord -
distance behind wing trailing edge
distance behind trailing edge of cruciform wing

(+=45°) at which upper two vortices pass be-
tween lower two

distance behind trailing edge at which vortices are
essentially rolled up

elliptic integral of the second kind
incomplete elliptic integral of the first kind
lateral distance between centxoids of vorticity of the

two halves of the vortex wake for $=45° (j=
?/1’+?/2’)

diilerence between p and q
complete elliptic integral of the first kind
force component in the z”direction
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force component in the z’ direction
length of the airplane
free-strewn Mach number
outward normal from surface of airplane or wake
static pressure
free-stream static pre9sure

P.U.2free-stream dynamic pr~sure, ~

m
cross-sectional area
plan form area of wing H
plan form area of wing V
local semispan of component wing H
maximum value ofs
local s8mispan of component wing V
m.axirnumvalue of t
free-stream speed
fluid velocity components in the z,y,z directions
Cartesian coordinates iixed in the body and ill~-

strated in figure 1.
/

Cartesian coordinates obtained by rotating the xyz
system an angle @ about the z axis as illustrated
in figure 6

}
yl’, Z1’, y’ and z’ coordinates of vortices 1 and 2 of 4-vortex

“ 7J2’,~’ analysis
force component in they direction
force component in they’ direction
y and z coordinates of centroid of vorticity
angle of attack. in the xyz coordinate systi as

illustrated in @ure I
angle of attack in the xy’z’ coordinate system” as

illustrated in figure 6
angle of sideslip in the xyz coordinate system as

illustrated in figure 1
ma+mrn circulation round a wing panel
angle from the positive y axis to a point on the

airplane surface, positive countercloctie, as
illustrated in figure 3

curve describing the cross section of the vokex wake
in pIanes z= const.

fluid mass density
-curve bounding the cross section of the airplane or

wake in planes z=const. as illustrated in figure 2
total velocity potential
angle of bank illustrated in figure 6
perturbation velocity potential satisfying Prandtl-

Glauert equation
perturbation velocity potential satisfying two-dimen-

sional Laplace equation in pIane9z=const.

Smlsclzmm

component wing Iying in the w plane
wing trailing edge
two sides of the wake
component wing lying in the zz plane

FUNDAMENTALRELATIONS

The theory for inviscid compressible flow about slender
bodies of arbitrary crow section lws become well formulated

in recent years and is now described in detail in many pnperz
(see ref. 2 or 3 for ,arwumfi). These methods can be applied
to the study of flow about cruciform wings and wing-body
combinations and will be used throughout the present
analysis.

THE COORDINATESYSTEM

Most of the analmis will be referred to a Carteaitm co-
ordinate s$tem fix~d in the body, as shown in figure 1.
The free-stream” direction may be inclined small angles a
and B@h the x axis, as projected onto the zz and XIIplanes,
respectively.

1

FIGUE131.- Crucif&m wing-body combination and ooordinato system
(Xyz).

.
THE POTENTIAL

A perturbation velocity potential w is introduced relotod
i% the total velocity potential @ according to

@= U=(m–py+az) +$0 (1)

and it is assumed that the perturbation velocities am suf-
ficiently small that the e~uations for compressible flow can
be, satisfactorily approximated by the Prandtl-Glwmrt
equation. Thus p is a solution of

(1–W7%Z+$%+%=0 (2)

If it is assumed, furthermore, that the airplane is sufliciontly
slender that the longitudinal perturbation velocities and
their gradients are small compared &th the lateral perhrr-
bation velocities and their gradien@ Word (ref. 4) has shown
that the equation for the perturbation velocity potential p
in the vicinity of the airplane is

(3)

for supersonic flow (IMO>l); and Heaslet and Lomax (ref. 6)
have shown that
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for subsonic flow (M.< 1). h these equations, 1represents
the length of the airplane and &= S’c(z) represents crow
sectional mea in planes normal to the z axis. The symbol
~ in these equations represents the solution of the two-
dimonsiormlLaplace equation

%v+$%=o (6)

for the t3peci6edboundary conditions, and can be written
explicitly as

~=&lx$b’azn”d”‘ (6)

whore u is the line bounding the cross-sectional area of the
airplane and its wake in the yz plane, and n is the surface
normal in the yz plane, as indicated in figure 2. Thus, the
thrcedimensional velocity field induced by slender airplanea

z
I

I
I

“a-----------f.
FIGURE 2.—Crosssectionof airplane or wake showing u and n.

flying at either subsonic or supersonic speeds is approximated
in the vicinity of the airplane and the wake by a velocity
field that satisfies the two-dimensional Laplace equation
and the boundary conditions in transveme planes plus a
longitudinal velocity field that depends on the longitudinal
mte of change of cross-sectional area and is independent of
y and z. Consequently, equations (3) and (4) are often
written in the following more abbreviated form

which is a general solution of equation (5), but w-hereknow-
ledge of equation (2) must be introduced to permit the
determination of g(z). As is apparent from comparison of
equation (7) and equations (3) and (4), the function g(z)
contains all of the dependence on Mach number, but the
only feature of the airplane geometry which enters is’ the
cross-sectional mea. Thus, as shown by Keune (ref. 6) and
Heaslet and hmax (ref. 7), g(z) for any slender airplane
can be thought of as the limit for small r=~~~ of the
diihrence between P and ~ for a body of revolution having
the same S’c(z) m the airplane, that is,

for M.< 1 and

g(x)=

(9)

for MO> 1. It is indicated in references 8 and 9 that a cor-
responding relationship occurs for Mm= 1 in transonic
theory, although there is at present no explicit formula for
computing p’ for a body of revolution in transonic flow.

Once p is determined, the pressure can be calculated
directly using the:el~tionship

qp==-$y=+%–19+*2(%’+$0.3(10)

THE BOUNDARYCONDITIONS

The boundary conditions require that the gradient of
the total velocity potenthd @ is consistent with the free-
stream conditions at infinity, and is zero when evaluated
normal to and on the surface of the airplane. Consequently,
q is a constant, say zero, infinitely far ahead of and to the
side of the airplane and

~=u.(ndn’+%) +WPz+niw-t-wz=o (11)

on the surface of the airplane. In equation (11), n’ repre-
sents the normal to the surface, and nl, W, and n3represent
the direction cosines of n’ with respect to the x, y, and z
axes, r~ectively. By the assumptions basic to slender-
airplane theory, ‘tl& equation redu-ces to

u.(nd%+md+a+=o

where b/Zm=w @/by)+% (b/&) and is the

(12)

surface normal
in a yz plane. Having equation (12) expressingthe boundary
conditions at the surfa~e of an arbitrary slender airplane,
one can easily write the corresponding relations for specific
shapes. For example, the boundary condition for ~ body
of revolution is

‘ (%i=a=u-(%-”fro+’co”) ’13)

z
I
I
I
I
I
I
1

.

FIGURE3.—Go~ section of body of revolution showing O and a(z).



—. .

84

zI11
I ..- Y
: ,,-
1 .“,--: #.

D

‘..
‘..

~..
‘. -. . .

‘..
‘. ‘.%x

———: —.—— .——— -.—— -——— ——-.———

REPORT 1296—NATIONAL ADVISORY COMMJTI’E E FOR AERONAUTICS

z

i

1

1,2 z (xty)

L.. —.- Y-----

I

-s +s

FIGURE4.-Views of wing showing ~(z,y)
,

where r=a(z) is ‘the body radius and 0 is measured in the
counterclockwise direction horn the positive y axis, as
shown in iigge 3.
The boundary condition for a thin wing situated near the
zy plane as shown in @we 4, is

(14)

where h.=h. (zjy) is the z ordinate of the wing surface. If
the wing is situated near the zz plane, as shown in figure 5,
the boundary condition is,

(15)

I

t-’

I
1
I
I $(X,ZI
1’

1. —_______ Y

-t–

FIGUED5.—Views’of wing showing hJz,z)

where hv=hr(z,z) now represents the y ordinate of the wing
surface.

Tlm nbove statements (and similar ones for other con-
figurations) permit the detenniuation of q for all points in
the vicinity of slender nonlifting airplanea, but only for
points forward of all trailing edges for lifting airplanes. The
insufficiency in the latter instance stems from the fact that
the line integral in the ddinition of ~ must be carried around
the trailing vortex wake and that additional relations are
necessary to detetie the location of the wake and the
conditions existing thereon.

The vortex wake is idealized in wing theory to an infinitely
thin vortex sheet extending downstream from the hailing
edge of the wing. The vortex ,sheet can be thought of as
being composed of vortex Iines having constant circulation
l?, or strength, along their length. The fundamental prop-
erties are that the velocity must be purely tangential on
either side of the wake, and that the pressuyM are equal on
oppositi sides of the wake. The iirst of these properties

\

corresponds to the statement that b+~ is zero on both
sides of the wake, and leads, in the present appro.simation,
to equation (12). Since the direction cosines m,%, rmd n~
of the normal to the wake are equal and opposite on the two
sides of the wake, one concludes that ?)m/b.n is eclunl and
opposite on the two sides of the wake. These two properties,
when combined with the pressure-velocity relation of equo-
tion (10), lead to the conclusion that the vorbxx lines are
p“arallelto the average of the velocity vectors on opposite
sides of the wake, ae@n evaluated to an order consistent
with the remainder of the analysis. In other words, I’ or
Aq is constant along lines extending downstream from the
trailing edge according to the relation

.dy ~ dz =~

!%.+%1
–um~+~

P++PZZ u.
u=a+~

where the subscripts u and 1refer to the values
sides of the wake. It is interesting to note in

(16)

on opposile
closing this

discussion that the inclusion of nonlinear terms in tho
pressure-velocity relation of slender-wing theory requires
consideration of the deformation and rolling-up of the vortex
wake, and that the &t wake commonly assumed in limmr
theory is inconsistent with the use of equdtion (10) for tho
pressure. Additional discussion of these points can be
found in reference 3.

A SECOND COORDINATE SYSTEM

In order to take advantage of cerhin symmetry properties,
part of the results will be given in terms of a second coordin-
ate system zy’z’. This coordinate system is related to the
xyz system by such a rotation about the z imis th~t the XZ’
plane contains both the z axis and the free-stream direction.
With this system, the airplane is banked an angle # with
respect to the y’ axis, and the free-stream direction makes
an angle a’ with the z axis as shown in figure 6, Since a t-ml
P am small angles, we have the following relations:

(17)

z’
1
1“

z’
i
Iz ,/’

H

/
:
L ----- ---- P

7Y

“.?
“Y

z’
1

Y’

Fmmw 6.—Cruciform wing-body combination and rotated coordinate
system (q/s’).
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This coordinate system will be used from time to time during
the discussion nnd for the presentation of tlie speciiic results
for 4=45°.

FORCESON SLENDERCRUCIFORMJVINGS

The relationships outlined in the preceding section apply
to slmder bodies of arbitrary cross section. Inasmuch as
tlm vortex calculations, which are the principal subject of
this study, are confined to cases involving either plane or
cruciform arrangements of thin wings, attention will be
chwoted in this section, to the determination of the tiero-
dynamic forces on flat-plate wings of zero thiclmm. (The
corresponding results for slender wing-body combinations tie
included in the appendix) These rew.dtssupersede those of
reference 10 in which proper account is. not taken of the
nonlinear terms in the pressure coefficient. Thus, consider
the cruciform wing illustrated in figure 7 and designate the

FIGURE 7.—Designckion of oruciform surfaces.

component wing which extends along the y axis as H and
that which extends along the z axis as V. Both components
me symmetricrd about the z axis, the plan form of wing H
being given by y= +9(z) and that of wing V by z= ~t(x).
Sinco the wings have no thjclmess, g(z) =0, the flow is
unaffected by Mach number, and ~= ~. The solution for
this case can be considered to be the sum of the solutions for-
tho flows about each component alone as shown in figure 8,

-+

c ) ,3--’ +

v= Va i- ~b

FIGURE S,—Addition of potentials for oruciform wing.

sinco wing H lies in a plane of symmetzy of the perwrbation
flow P*about wing V, and wing Vlies in a pkme of symmetry

of the perturbation flow ~ about wing H. The expression
for pa can be found in many sources (e. g., ref. 11)-and is

where the sign is positive in the upper half-plane and negative
in the lower half-plane. The expression for P*is

~=*ydt’+7–z’+,/(t’v–z9’+4yz’+u.Py (19)

where the sign is positive h the left half-plane and negative
in the right half-plane. The perturbation velocity potential
for the flow about the cruciform wing is thus

Through application of equations (10) and (1S) through
(2o), expressions for the differential pressures or loadings on
the two component wings are found to be

()
*y =_ wtlb + @lw

~ ‘ -J=m 41–2P’ 4&’J
..

The sign convention is such that the loadings are positive
when they are associated with forces in the direction of the
positive y and z axes, and hence with positive lift and side
force as indicated by the subscripts on the symbol Ap.

00f the two terms in the loading expressions, tho sym-
metric first terms contribute to lift and side force and the
antisymmetric second terms contribute to rolling moment.
To illustrate this point further, figure 9 shows the load dis-
tribution on a cruciform wing havhg triangular components.
The loading on the vertical component is slown by the two

\

FrGurm 9.—Load distributions on triangular cruciform wing
components.

top sketches, and that on the horizontal ~omponent is shown
by the lower sketches. The sketches on the left represent
the contribution of the symmetric-first terms of equation
(21); those on the right, the contribution of the antisym-
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metric second terms. As has been pointed out in many
discussions of slender-&ng theory, equation (21) for the
loading applies only to those portions of wings for which
o%/dx and dt/dx are positive. Consequcmtly, the yresent
analysis will be confined to wings having their maximum
span at the trailing edge. The pertilble ranges for a and
P are also restricted inasmuch as equation (21) becomes
invalid when either the angle of pitch or yaw becomes so
large that the leading edge rotates beyond the free-strewn
direction and becomes, effectively, a trailing edge. Mathe-
matically, this limit occurs when ]13]=ds/dx and when
lal=dt/dz. If it is desired to investigate wings inclined
at large angles, consideration must be given to the influence
of the trailing vortices lying outboard of the sides of the
wing.

The total forces on the cruciform wing can be deterniiped
by integrating the loading over the entire surface area.
Thus, the lift (i. e., the total force in the direction of the
positive z axis) is given by

s’
L= 8Ap=dx dy+2qaa02 (22)

H

where go is the maximum sernispan of wing H. Likewise,
the totnl side force in the direction of the positive y axis is

Y=
SS

@y dx dz= —2q9tOi (23)
v

where t. is the maximum semispan of wing V. The same
results, expressed in coefficient form, are

D

c+;=;—=–A=a (24)

Cy–q:r–.2
–—–—”A& (25)

It may be noted that these latter integrated results can
be obtained more easily by momentum methods (e- g., refs.
2 and 3) if details of the loadings are not required. For
example, the lift of any plane or cruciform wing is given
SiI@y by

J
+sO

L=PJJ. ApTBdy
’80

(26)

where AVre refers to the difference in the values of the,
perturbation -potential q on the two sides of the wing,
evaluated at the trailing edge.

JVAEEAND DOWNWASH

The determ.imition of the shape of the trailing vortex
sheet and the associated velocity field behind A wing cus-
tomarily involves considerations of classical vortex laws
together with the known vorticity distribution at the trailing
edge. For slender wings, these relations are all imbedded
in the equations given in the tit section of the present
analysis. Thus, since S.=O behind the wing and @/bn is
equal and opposite on the two sides of the vortex wake, it
follows from equations (3), (4), and (6) that the perturbation

potential for
is given by

FOR AERONAUTICS

the flow in any lateral *planebehind the wing

(27)

A direct consequence of the zero thickness of the vortex
wake is that the normal derivative in equation (27) is equal
and opposite on the two sides of the wake. This moans
that the contour integral around the wake indicnted by u
in equation (!27) can be replaced with a line integral along
only one side 1 of the vortex sheet. The integrand then
involves not p, but the difference in potential Aq on the’
two sides of the wake. &nce, furthermore

Ap= 17 (28)
and

a
~n in r=–$ tin-l-1

v-u
(29)

equation (27) becomes, on performing an integration by parts

since I’ is z&roat the latefal extremities of the vortm shed.
The corresponding relations for the velocity components v
and w in the direction of the positive y and z axes can be
found by using equation (3o) in conjunction with equation
(l), thus

The relation for the path of each vortex line given by
equation (16) can be expressed in terms of o and w, thus

(4+=(%’%(33)

where the subscripts u and 1 again refer to the values on tho
two sides of the vortox wake.

The principal dii3icultyin the calculation of o and w stems
from the fact that the shape x and the vorticity distribution
W/i3k of the wake are not immediately known at rdl sta-
tions behind the wing, but only at tho trailing odgo, At
this station, the circulation distribution can be determined
directly from equations (18) through (20) by .mtting z= O
for the vortex sheet behind wing H and y=O for that behincl
wing V and replacing s and t with so and to (the mmimum
values for 8 and t, occurring at the trailing edge), The
resulting expressions

(34)

(35;

indicate that the circulation distribution is dliphic immediat-
ely behind each wing. Tfis case illustrates the fact th~i
the circulation distribution and span loading are not ahvoy
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proportional. This conclusion is immediately appm,ent
when it is observed that the circulation distribution for the
preient caee is symmetric about the x axis, whereas the span
loading is asymmetric, as can be seen by emmi.ningfigure9.
If attention is confined to stations immediately ‘behind the
trailing edge and to cases where the wing is at very low lift,
so that z—z~~ and 1’ are small, it may be assumed for cer-
tain purposes that the distortion and rolling-up of the wake
are so slight that they can be disregarded. With this as-
sumption, the induced flow field behind a lifting wing can be
computed directly. Thus, the perturbation potentiid for the
flow behind the triangular cruciform wing treated in the
preceding section can be obtained from equations (18)
through (20) by again substituting so for .sand tOfor t, and
the associated velocity field can be found therefrom by dif-
ferentiation. Although the error incurred in thainduced ve-
locities by the use of this assumption’ can be continually
diminished as the lift and distance &cm the wing is reduced,
the condition of zero force on the wake is always violated
at the edges of the wake. The eliinination of these forces
domcmds that the vortices bi free to roll up. Inasmuch as
thcae effects become of increasing importance aa the aspect
ratio is decreased, attention here will be focused more on
determining the behavior of the trailing vortex system than
on performing calculations assuming a simplified wake form.

SIMILARI~ CONSIDERATIONS

The rate at which distortion of the wake progresses with
incrtmsingdishmce from the wing will ‘first be investigated
by means of similarity considerations. Consider two geo-
metrically similar cruciform wings traveling at either sub-
sonic or supersonic speeds,.but ditlering in span and angles
of pitch and yaw. It is desired to relate the distances be-
hind the two wings at which the wake patterns are similar.
Let the symbols referring to the referance wing be denoted
by asterisks and those referring to the second wing be plain.
Inasmuch as a first requirement is that the vorticity distri-
butions must be similar at the trailing edge, it is necessary
that the ratio of angle of attack to angle of sideslipa/13be the
same for both wings. (If the problem is stated in the alterna-
tive manner by specifying the angle of attack a’ and angle of
bank +, this condition corresponds to requiring that both
wings have the same angle of bank.) From equations (31)
and (32), it is evident that the perturbation velocity com-
ponents p. and q. behind the wing are directly proportional
to the circulation and inversely proportional to the scale.
Inasmuch as the former is measured by, say, the maximum
value of the circulation r., and the latter by the semispan
so, the ratio of the lateral induced velocities at correspond-
ing stations behind the wings is equal to the ratio of the
circulation loading of the two wings.

(36)

Since the ratio of the longitudinal distances, in terms of
wing semispans, from the trailing edge to stations having
similar wake patterns is inversely proportional to the mtio
of the induced velocities, in temm of the free-strewn velocity,
we hnvi

400104-5%7

(37)

!l%is relation reduces b’ the following when the circulation
function l?. is replaced by the lift L through the introduction
of equation (26) -

o
or in dimensionless form

(38)

(39)

where A refem to the aspect ratio and CLto the lift cosf6&mt.
In many casea, it is preferred to express the distance d in
terms of the wing chord rather than the semispan, whence

(40)

From this result, it can be concluded that the expression for
the distance required for the trailing vortex sheets to assume
any particular co&guration is of the form

$=k(a(?) (41)

where k is, as yet, an unspecified constant. This formula is
directly applicable to both the rolling-up of the vortex sheets
and the relative motions of the rolled-up vortices. Thus,
for instance, one set of values for k will give the distance

required for the vortex sheets to become rolled up to any
given ihgree as a function of the angle of bank ~; whereas
another set of values will give the distance for the rolled-up
vorticw to asmune some particular orientation with re9pect
to one another.

Thg foregoing analysis gives no information regarding the
relative rates of rolling-up of the individual vortex sheets
trailing from each panel of a cruciform wing. If the angle
of sideslip B is zero and the angle of attaok is difbrent from
zero (or the angle of bank #is zero), a vortex sheet exists at ‘
the trailing edge of only the horizontal wing and it rolls up
in exactly the same manner as it does behind a single plane
wing. If, on the other hand, the anglea of attack and side-
slip are equal (or the ahgle of bank is 45°) and the cruciform
wing is composed of four identical panels, the vorticity distri-
bution at the trailing edge of each panel is the same and the
wake rolls up into four equal vortices at nearly equal rates
Other cases are more complicahd.

Attention has been called in reference 1 and elsewhere to
the value of k=O.28 given by Kaden in reference 12 for the -
constant in equation (41) for the distance required for the
vortex sheet hailing from a plane wing having elliptic circu-
lation distribution to become “essentially rolled up.”
Although the accuracy, as well as the precise mtig of
Kaden’s result is impaired by the numerous and somewhat
arbitrary assumptions introduced in the course of the
analysis, the result is useful for predicting the order of
magnitude of the distance involved. The problem actually
attacked by Kaden is that of the rolling up of a vortex sheet
of semi-infinite width, having pirabolic circulation distri-
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bution. The result is applied to the case of a “vorkm sheet
of fite width having elliptic circulation distribution by
selecting the strength of the parabolic distribution to match
the known elliptic distribution at the wing tip, and assuming
that the rolling up of the finite vortex sheet and the semi-
irdlnite sheet proceed identically.

If the same ideas together with Kaden’s result for the
plane wing are applied to the cruciform wing, the distance
from the trailing edge to the station where the vortices are
wsentidly rolled up is Q

d.()—=o.x$~ - (42)
GE

for the horizontal wing and

(43)

for the vertical wing.

NUMERICAL R~IJL’H3 (20AND 40VOETICE3)

A detailed analysis of the form of the vortex system behind
lifting wings can be made on the basis of equations (31)
through (33) by replacing the continuous sheet of vortices
with a tite number of discrete vortices and determining
their positions at each longitudinal station by a step-by-tip
calcriIation procedure. Such a calculation was carried out
long ago by Westwater (ref. 13) for the plane wing with
elliptic circulation dist~bution. In this particular tmat-

.
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men6J the vortex sheet was replaced by 20 vortices of oqunl

strength and the results were presented by giving, both
numerically and graphically, the positions of each of tho
vortices at several different distances behind the,, wing.
The9e results, which of course apply equally to crucifox?n
wings at zero sideslip, are summarized in graphical form in
figure 10. Although these results are preaentod hero in
terms of body axea, rather than wind &xes as previously
given in reference 1, additional reference lines are included
which extend downstream from the trailing edge in tlm fre?-
stream direction. This sketch clearly illustmtea how tho
center of the vortex sheet behind low-aspect-ratio win~ ex-
tends downstream in nearly the direction of the mtondod
chord plane, while the vortex cores extend downstream in
nearly the direction of the free stream. Similar cxdculotions
have been made recently for wing-body combinations” and
are reported in reference 14 by 130gws.

A numerical calculation 2has been carried out for tho cam
of k cruciform wing having four identical panels at equal
angles ‘of attack and sideslip (4=460). In this calculation,
the vortex sheet trailing from each of the four panels is re-
placed by 10 ~crete vortices of equal strength distributcd
in such a fashion that the area under ach step of the approxi-
mate circulation distribution is equal to that under t,he cor-
responding portion of the elliptic curve representing tlm
given circulation distribution. With the stmrtgths and po-
sitions of the vortices thus determined, the velocity com-

*‘l’hedud cmnpntauonaw dm?underthecupervblonofMr.StmmrtM. Orandtdlof
theEkctrmluI&ddneOomWttngBi-fmhoftheAmesAe~@dl@.1~huIorY.
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.. .. . . . l?muaE 10.-Shape of vork sheet for plane wing with ellfptia oiroulation distribution.
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pommts at the position of each vortex are computed tiing
equations (31) and (32) and the changd in the position of the
vortices with a small increase-of the distanw from the wing
is detrmnined using equation (33). This process is then re-
peated using the neiv vortex positions. Since the entire
trailing vortex system is symmetrical about a line inclined
at 46° to the zyz coordinate system the results are expressed
in terms of the xy’z’ coordinate system described earlier
with tlm angle of bank 4 set equal to 45°. With the posi-
tions of the vortices given in this system, it is necessmy to
specify the coordinates of ohly half the vortices, since the
strmgths and locations of the remainder are just those of
mirror images about y’= O; that is, with the vortices num-
bered from 1 through 40 as indicated in figure 11, vortex
20-j-i is the image of vortex i and the following relations
hold between the two vortices.

Since the force component in the direction of the yt axis, or
tho side force Y’, vanishes, the force mmponent in the direc-
tion of the z’ axis, or the lift L’, is equal to the resultant
lateral force, thus

L’=~LV=@L (45)

or, in coefficient form

(46)

Since it follows, furthermore, from equation (17) that

a’ =~~=-@a (47)
we have

for cruciform wings of equal span. .
The results of the calculations are given in three forms.

A highly abridged illustration of the rewdts is given in figure
12, u moro complete seriesof illustrations is provided in figure

i
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FIQUEE 11.—N~bering system for 40-vortex oaloulations.

13, and a complete listing of the numerical results is given
in table I. In order to facilitate the fairing near ~e ‘plane of
symmetry of the curves representing the vortex wake, the
position of the point lying in the plane of wjmunetry ww cal-
culated at WA downstream station. In keeping with the
remainder of the present analysis, the above results are given
in terms of body aws. Additional reference marks are shown
on the graphical presentations, however, to indicate the posi-
tion of a line in the &ee-stream direction passing through the
trailing edge of the wing root. In figure 12, thieline is shown
as a solid line lighter in weight than the axes. In figure 13,
its position is indicatid by a small circle on the z’ axis. As
can be seen from examination of the results, these calcula-
tions were carried forth for distances behind the wing up to
approximately an (A/CL’) (b/c) of unity. The rolling up of
the vortex sheets is clearly evident and has progressed to a
substantial extent at the most rearward station. Attention
is called to the fact that this distance is much greater than
that indicated by Eaden’s formulas for the distance to roll
up and that the rolling up of the vortex sheets proceeds at n
much slower rate than indicated by these relations. The
same conclusions follow, from an examination of the planar
case.

A second prominent feature of the vortex wake of cruci-
form wings at 45° bank concerns the tendency of the vortices
from the upper wing panels to incline downward toward
those from the lower wing panels, and eventually to pass
between them.. Although the present calculations were not
carried on to sufficiently large distancm from the wing to
display this phenomenon fully, the results do confirm the
conclusions of reference 15 that this ‘leapfrog” distance is
much greater than the distanw indicated by Kaden’s formula
for rolling up of the vortex sheets. An important conse-
quence of the d.iilerence in these distances is that the full
details of the rolling up need not be considered in the analysis
of the slower leapfrog phenomenon. Thus, if the properties
of a continuous vortex system are to be ascertained by con-
sidering the properties of a system comprised of a finite
number of discrete vortices, a great many vortices are
necessary to trace the course of the rolling up, whereas a
satisfactory model for studying the leapfrog characteristics
may often be had by using only one vortes per wing panel.

ANALYTICALEliisIJLra(4Volyruxm

It is apparent from the preceding discussion that a very
large number of discrete vortices must be included to give
an adequate representation of ‘the vortex system nw tie
wing. At greater distances horn the wing where the vo-fiex
sheets are substantially rolled up, it appears plausible that
the analysis can .be sirnpli6ed, while still retaining the
essential featurea, by assuming that the vortex sheets we
fully rolled up into four vortex lines (one from each wing
panel). This simpliikation is analogous to the use of a
vortex pair for calculating tie induced flow field at great
distances behind a lifting planar wing.

In contrast to the case of the plane wing for wwch the ~
vortex sheet rolls up into two vort6x lines thatz at great.
distance behind the vving, are simply straight lines inclined
at a small angle from the free-stream direction, the analogous
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I?Nmm 12.-Shape of vortex shsets for oruciform wing at 45° bank with elliptio circulation distribution.

problem for cruciform wings is necessarily more complicated.
Instead of two rolled-up vortices, there are now four and
their induced effects upon one another are such that the
curves described by the vortex lines are quite intricate.
The simplification introduced by diminishing the number of
vortices from 40, say, to 4, however, is particularly important
since it psrmh the use of analytical methods instead of the
numsricaI procedure-s described in the preceding sections.

The fl.rst step in the development of this analysis is to
select the strengths and locations of the four vortices used to
represent the aotual vortex sheet at the wing trailing edge.
Site it is asaurdedthat all of the vorticity from each wing
ptUlslrolls Upinto a single vortex, it appears natural to mn-

sider that each vortex is of strength equal to the circulation
around the corresponding wing panel and is situated later-
ally, at the trailing-edge station, at the position of the cen-
troid of vorticity of the vortex sheet it replaces. It is further
assumed that the strength of each vortex is constant along its
length, but that its lateral position changes with z in accord-
ance with the velocities induced by the other three vortices.
AIthough coincidence of the lateral position of each of the
four discrete vortices of the simplifiedmodel and the centroid
of vorticity of each of the actual vortex sheets is assured at
ordy the trailing edge of the wing, it is tacitly assumed that
the two sets of locations are sufficiently near tc be inter-
changeable for most practical purposes. . The. accuracy of
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this assumption, which has already been demonstrated for
planar wings in reference 1, will be discussed at the end of the
prcaent section.

Determination of vortex paths for 45° bank-k reference
15 an analysis was carried out in which equations were.
developed for the paths of foti rectilinear vortices which
start in a symmetrical arrangement as shown in figure 14.S
In that paper, the analysis was applied to the calculation of
the paths of four vortices representing the wake behind an
equal-span oruciform wing at 45° bank. It is necewary to
reinvestigate this application, however, because the. vortex
positions at the trailing edge were calculated from the span
loading, since it was not recognized that the circulation
distribution and span loading were difbent. The, present
analysis supersedes the part of reference 15 dealing with the
application to the cruciform wing. The results will be given
here in terms of the body axes xy’z’ defined earlier. From
the analysis of reference 15 it is found that if the 4 vortices
are of equal strength, the projection of the path of vortex 1
on’ the y’z’ plane is given by @ t7<4)

sin$00

41 —h+Sid p.)+yo’+~d
j

(49)

where

j=y,’+y2’ Q= 1 –2

()
$ 1–Y;

%’=vftlue of yl’ at k=: d=distance behind
wing trailing edge fving trailing edge

and the subscripts 1 and 2 refer to the vortex numbem
indicated in figure 14. The symbol a’ represents the angle
of attack in the XY’Z’ coordinate system and is the angle
botwmn the x axis and the freestream direction.

The values of y&j, and Q are to be determined from the
spanwise distribution of circulation l?. For the me of an
equal-spnn triangular cruciform wing banked 45°, the I’
distribution is identical on both component wings and, aa
shown in equations (34) and (35), is elliptic. Hence, the
four vortex lines replacing the vortex sheets are all of equal
strength and must be placed at the corners of a square in
the plane of the trailing edge. 11.husthe initial values of
yl’ and yj’ must be equal and the lateral position of the
controid of vortices 1 and 2 is given by the average of their
y’ coordinates. That is,

~Tbo moths of2* vortfm mm trcnted by Grobll (Viertd@hahrUt @r uatmrforscbbdm

ai?wraaah ztib, vol.22am, w-w, m-lov. HowoveT, IILS r=nft fortie 0= Of
interestbmIsfncorrect.

3e

. .

(7
4< i

Plane of symmetry

FIGURE 14.—Four vorticee iu L@z’ system

‘3, “

replacing wake bebiud
equal-spari oruciform wing at 45° bmk.

Ycfip’—;—yol (50)

and therefore- Q= 2. Furthermore, ”since the four vortices
are
the
the

to be placed at the centroids of vorticity from each of “
four equal-span panels, one can immediately write, for
elliptic circulation distribution and 45° bank,

NTOW,since the impulse in the z’ direction of the four vortices
trailing behind the cruciform wing must be equal to the
resultant force in the 21direction, one can write

. 2P.i7. rof=~ p.u.28~L’ (52)

so that

(53)

where S’and A are the area and aspect ratio of one component
wing. Thus, all the necessary constants have been obtained
for equation (49) so that, upon evaluation of the required
elhptic functions, it becomes

z~’ 2—=—
f3 [

1.4675—E $ ~ + m *

“ ‘] 4-”(cOs”+’@+

and it is noted that ~ increases positively
value pO=~/2 at the wing trailing edge.

(54)

horn its initial

4001 ft4-G~
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In reference 15 it was shown that the path of vortex 2
can be obtained from tlmt of vortex 1 by the ‘use of the
repression for the relative paths

so that (since (3=2)

Siarly, with the use of equations (50) to (53), the repre-
ssiongiven in reference 15 for distanca behind the wing

reduces to

(57)

(58)

so that the pati of vortices 1 and 2 are completely detied by
equations (50), (54), (56), and (58) and the paths of vortices
3 and 4 are found by symmetry. The leapfrog distance,
which is defined by the condition z1’= z2’, is obtained by set-
ting q=ir. The last term in the bracketed expression above
then vanishes and the distance dL can be expressed, after
evaluation of the necessary elliptic functions, as

.

$=~&,(l.0834)

dL_dJ_2 33&= 4.664
b fb . c.’ Td

(59)

(60)

Jyote that this relation has exactly the form of equation (41)
and is independent, of plan form.

Comparison with results of 40-vortex calculation.-It is
evident that at very large distances behind the wing the cen-
troids of the vorticity shed from each panel must lie within
the rolled-up vortex cores. Hence, the problem of determin-
ing the positions of the rolled-up vortices is essentially that of
determining the positions of the centroids of vorticity at dis-
tances greater than the rolling-up distance behind the wing.
If this is to be done by using fonr vortex lines leaving the
trailing edge ot the centroid-of-vorticity positions, then the
assumption must be made that the positions of the four

vortices as determined by equations (50), (54), (56), nncl (58)
coincide with the positions of the centroids of vorticity at rdl
distances behind the wing. This assumption has therefore
been made in the above analysis. In order to investigate
the validity of this assumption for 45° bank, comparisons
have been made at various distances behind the wing bo-
txveen the vortex positions given by the present 4-vortex
analysis and the centroid-of-vorticity positions obtnimxl
from the 40-voitex numerical calcubtions of the prwmling
section. . The latter positions were calculated according to the
relations

(61)

for tie vortex sheet from each wing prmel,and these positions
are tabulated in table II and indicated on the plots of figure
13 by the symbol customarily used for the ranter-of-gmvity
position. The fact that the cegtroid-of-vorticity positions
become indicative of the vortex-core positions only after t:ho
vortex cores are well developed is clearly illustrated by the
centroid-of-vorticity positions of figure 13. On the ot,hor
hand,-’the comparison shown in figure 15 of the .centroid-of-
vorticity positions for the 4- and the 40-vortex appro.simn-
tions indicates that the agreement is remarkably good for all
distances behind the wing. It can therefore be concluded
that the vorta positions obtained in the preaont 4-vortex
analysis furnish good approximations to the positions of the
vortex cores at distances behind the wing at which tho
rolling-up process is essentially completed.

Determination of initial slopes of vortex paths for’ all bank
angles.-The analytical method of the present section is
restricted to an angle of bank of 46° inasmuch as rLsolution
was obtained by making use of symmetry considerations.
For other anglesof bank, it is doubtful that a closed mmlyticnl
solution could be obtained for the paths of even the simple
4-vortex model. It is a simple matter, however, to writo
analytical e.spressionsfor the initial slopes of the 4 vortex
lines at the wing trailing edge; and it is possible to write
corresponding rmpressionafor the initial slopes of tko paths
described by the centroide of vorticity of the flat vortex
sheets leaving the trailing edge. In this way, one crin gain
some idea of whether the 4-vortm opproximntion might bo
a good one for other angles of bank. It will be convenient
here to return to the WZ body wax lying in the plrmesof tho
wing panels. In this @ordinate system it becomes clear that
the y and z components of the slopes of the vortices from
opposing panels are equal. Thus, equations (31) through
(33) red~c~ for the 4-vorte.. model “to -

‘ ($$)d.o=r%d.o=-’+a

(S)d.o=(%)..o=a-w::?+to,

‘ r#)d.o=(%)d.o=-’+.*&::;to,

(%).-O=(%)...=”-*

(62)
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FIQUED 16.—Initial positionE of four vortices in wz coordinate s@-ern”

where the subscripts 1 through 4 refer to the vortices numb-
ered as shown in figure 16, and rOHand 170Krefer to the
maximum circulations of the horizontal- and verticahing
components, respectively. Site the latter quantities are
related to the angle of attack and the angle of sidedip accord-
ing to

(63)

the expressions .of equation (62) can be rewritten as follows:

(%)..0=(%)..0=(-1+3
(%)d.o=(%)d.o=~-+:~~]

(~)d.:=(%)d.o=~[-l++~o]
(3..0=($3.0=4+)0

(64)

Determination of initial slopes of centroids of vorticity of
the vortex sheets for all bank angles,-For comparison with
the above 4-vortex approximation, consider now the initial
slopes of the paths described by the centroids of the vorticity
trailing from each panel of the cruciform wing. Inasmuch
as the singularities at the edges of the wake- contribute
substantially to the slopes of these paths, and conditions
in the immediah vicinity of such singularities are diflicult
to investigate directly, a control-surface type of analysis
will be used. As WWbecome evident on reding, the amdysis
bears many features of resemblance to that employed in the

Fmm& Ii.—Vortex wake and cylindrical control surfaoo C.

calculation of forces on the leading edges of thin wings.
To start, consider that portion of the trailing-vortex system

I contained between two parallel planes normal to tho z
d and dx apart, ahd inside an arbitrary cylindrical surfaco
~ having generators pa%llel to the z axis, as illustrated in
iigure 17. The y and z coordinates of the centroid of vor-
ticifiy of the enclose+portioxrof the wortex%ystim-are- given-
by

(65)

where yi and zi are the coordinates of D vortex having
strength I’i, and the summatiom are extended ovor hll
vortices extending through the planar ends of the control
surface. Site the slopes of each vortex fdament are giwm,
according to equations (31) through (33), by

the slopes of the path of the centroid of vorticity aro

Now, an important consequence of the fact that tho flow
in the vicinity of the wake is governed by Laplace’s oquationj
that is, by equation (5), is that the velocities at any station
are the same whether the vortices at that station are free or
fixed. This means that

%8 =Oi,,=d=~i; Wilrc,= Wi,k,d =Wi (68)

In contrast to the force-free state of the actual b@ng-
vortex system, the fixed-vortex system sustains forces
given by

dYf=-p.iu,rJx; dL,=pm7i,r~x (69)

on each vortex tiament, or

dY=ZdY,=-pmXZ,I’&

dL=ZdL,=p.Xi,I’&c }

(70)
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in total. Combining equations (67) and (70) yields the
following relations:

-f

a

2~b--------- -------- J- ----
:“ y-- —------- ------ ,

. \ a

Hence, the slopes of the lines connecting the centroid-of-
vorticity positions of the free-vortex yrstem can be deter-
mined from the forces on the fixed-vortex system.

The total forces dy and cJ_i5on the fixed system can be
determined by applying momentum methods to the control
surface shown in figure 17. This calculation is simplified
bv the fact that the Dressur= and flow of momentum

3

t~lrough
only the

the plane fac& exactly counterbahmcb, leaving
contributions from the contour 0. Thus

FIGURE 18.—Components of soleoted control surface.

%=-JcPdz-PmJc~(vdz-wdYI

}
(72)

2=J.PdY+P&wdY-vdz)

z
1

;
.,

“-1+’-’
where the integrals are to be taken in the counterclockwise
sense and the pressure p is related to tke velocity com-
ponents according to equations (10), (31), and (32), that is

Now, p., a, and P are constants and ccmtibute nothing to
the integral of equation (72) when integrated around the
contour, and p=is zero because t,hovortices are tied. Hence,
equation (72) can be rewritten as follows:

FIGURE 19.—Polar coordinates near edge of wake.

The contributions of p&t a can be written directly, and hat
dYp s~=$~[(d–fldz+%twdy] 1. (74)
++” [(w%?)dy-2vwdz]

-.
of part b can be ev&ated by considering the asymptotic
form of the velocities in the vicinity of the edge of the wake
to be the same as that of the ~elocities around the edge of a
flat plate; that is,

v> —~ “r ‘m; w=>+cog; (77)
3P

J?inally,on substitution of equation (74) into equation (71),
we’ have the following relations between the slopes of the
path of the centroid of vorticity and the velocity compo-
nents v and w which exist at the location of the cylindrical
control surface 0. .

where p and w are polar coordinates, with origin at the edge
of the wake as indi~ted in figure 19, and P is a constant.
The contribution of part c is zero be~use dy is zero, dz
approaches zero, arid the velocities are nonsingular there.
Upon carrying out the necessmy operations, one finds that
the slopes of~he path of the centioid of vorticity immediately
behind the wing are

‘y. 1

Jr 1
_w&+(–@y9&_—

=–u.~r< c
ck. 1

S[
vw dy+(–@:@dz 11

(76)
—=_ _
dx u=zrt ~

whore

(-)dy., 1
J

‘.- dr
dx ...= ‘u= o v Gdy

d%,

() [s }

(78)
1 SO

x ~.o=~ .

–w$jdy+p%r]

Jzr,=– (V dY+W dz) (76)
c

.
The above results will now be applied to the calculation of

the initial slopes of the path of the cantroid of the vorticity
trailing from the wing panel which extends along the positive
y axis. In keeping with the notation of @ure 16, this panel
will be designated with the number 2. If the control surface
C is selected M shown in figure 18, the integrals of equations
(75) and (76) can be divided into three parts.

The velocity compon&ts o and w can in turn be expressed
in terms of the circulation distribution at the trailing edge
by employing equations (31) and (32). The circulation
distributions on both the horizontal- and vertical-wing com-

.
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ponents are elliptic, according to equations (34) and (35).
Hence,

roE=2u#?o; rov=2uJto (79)

“It also follows from equations (76) and (77) that

and therefore

(80)

and photographing the water surface from above with a
moving-picture camera. The traces of the wake were made
visible by applying fine aluminum powder to the wing trailing
edges. The models tested were triangular flatplote wings
of aspect ratio 2.

Abridged series of photographs are presented for angles
of bank of 0° (plane wing) and 45° in figures 20 and 21,
respectively. The latter results are shown for distances up
to the leapfrog distance dz behind the wing, and mmsuro-

dzc,()x ..O=?
For cruciform wings having horizontal and vertical com-
ponents of equal span, that is, so=t., the relations of equation
(81) reduce to

dyti(–) ()=–o.599I3; ~ ~=O=o.785a
~ d-o ,

(82)

These results also apply to the initial slopes of the path of
the centroid of the vorticity trailing from panel 3. The
corresponding expressions for panel 1, and likewise panel 4,
can be found by the proper interchange of quantities and
are

@&l()h d-o ()=—0.785/9; ~ d=O=0.599CY (83)

These results may be compared with the corresponding
values for the inital slopes of the vortex lines of the 4-vortax
approximation to the wake of an equal-span cruciform wing
by substituting g.=to into the relations of equation (64).

dy,

()

G%

()
=—0.797B; ~ d..

~ ,f..
=0.595U (84)

dy,()= d.. ()=—O.595J9; ~ d=O=0.797a (85)

It can be seen by comparing the results of the immediately
preceding equations that the initial slopes of the individual
vortex ‘lines of the 4-vortex model are very nearly the same
as the initial slopes of the paths of the centroids of vortici~
of the corresponding portions of the continuous vortex sheet.
This conclusion serves as a tit indication that the 4-vortex
model may be as satisfactory for detmmining the positions
of the rolled-up vortex cor~ at great distances from the wing
for all angles of bank as was demonstrated for 45° bank in
figures 13 and 15.

~ATER-TANK EXPERIMENTS

.Experiments were conducted in a water ta& for the
purpose of observing visually the vortex paths calculated
in the foregoing analysis. Photographs we~e obtained of
the wake at vario~ distances behind a cruciform wing by
plunging a model vertically into the water at uniform speed

.

(81)

ments of this distmce were obtained by means of a ttipo
which moved with the model and recorded on the film iho
distance between the wing trailing edge and tlm wator
surface. The rcisultsof such observations at various nngles
of attack are presented in figure 22 and compared with tho
4-vortex calculation of equation (60). The agreement is
seen to be quite satisfactory except possibly at the very high
lift coefficients. The lift coefficients for the mperimenial
points were calculated from equation (48).

Because of the pemistence of the vortex sheets connec~ing
the vortex cores (see figs. 13 and 20), the 4-vortex approxi-
m-ation may not yield “accurate vortex paths at clistancos
behind the wing greater than about d~ since tho sheds may
upset the periodic nature of the predicted paths. Tlm 4-
vortex approximation likewise cannot be expected to give
the vortex core positions accurately at distances b&ind
the wing at which the vortex sheets are only partiaIly rolled
up since there the positions of the centroids of vorticity
do not correspond to the vortex cores, as discussed pre-
viously in connection with figure 13.

LIFT ON A TALLIN A NONUNIFORM
DO’iVNJVASHFIRLD

Once the vortex positions at the tail station are known
through calculations similar to those described in the pre-
ceding sections, or by other means, the associated down-
-washand sidewash fields and the lift and side force on the
tail can be determined by direct calculation. The cloter-
mination of the lateral velocities can be accomplished by
substituting the known strengths and,positionsof the vortices
into equations (31) and (32) and integrating (or summing in
the case of a discrete vortex approximation). This problem
is Wactly the same w the classical problem of detmnining
the incompressible flow field associated with a distribution
of rectilinear vortices, and several alternative methods me
available for obtaining the solution.

The determination of the lift and side force on a tail
in a nonuniform downwash field of known structure is the
remaining task necessary to complete the calculation of such
quantities as the lift and-center of pressure of a wing-tail
system. AILhough the solution of this problem is ofton
approximated by tie introduction of additional assumptions
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(a) d/b= O.11. r (d) dlb= 0.94.
(b) d/b= O.33. / (e) d/b=l.3S.

(C) d/b= O.61. (f) d/b=l.79.

FIGURE 21.—Photographs of the wake at various distances behind an
equal-span trifmguhr cmciform wing of aapect ratio 2; ~= 45°,
a’= 17°.



A THEORETICAL STUDY OF THE AERODYNAMICS OF SLENDER CRUCH?ORM-WTNG ARRANGEMENTS AND TH131R W.AIQ3S 103
.

. .

. .

.,

. . . . . .
.,

..

. .

!

,, :.,, .:
. - ,.-

. .

. .

---- ,
.-

., .*”

-.:. . . . .
..-

.- . . . .
.- <.-,.. . . . . .

(g) d/b= 2.24. (i)d/b=3.65.

(h) d/b=2.83. (j) d/b=4.26.
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FIGUnD 22.—Compark.on of theory and experiment for leapfrog
distance behind equakpan cruoiform wing (+=45°).

such as strip theo~, etc., the exact linear-theory solution
can be obtained b.y use of reciprocal theorems. This has
drendy been demonstmted in reference 16 and elsewhere
for the cnse where the tail is a planar surface of suthciently
high aspect ratio that the linear pressure-velocity relation
can be used. The following discussion will be concerned with
the derivation of the corresponding relationship that is
consistent with the formulation of slender-body theory
summarized in the first section “of the present analysis for
the lift of a low-aspect-ratio cruciform wing having flat-
plate wing panels. This aim will be accomplished by con-
sidering certain properties associated with a second cruciform
wing identical to the fit, but immersed in a uniform flow

field streaming in

.

AERONAUTICS

the opposite direchion to that about the
fit wing,- ~ illustra~~d in figure 23. Inasmuch as
fig 1 i9 ~emed in a nonfifo~ flOIV field, tll~ 10CQ1 or

effective angles of attack and sideslip ~ and ~ are vmioblo,
that is

(%),
W,?/)= #=%+~

. .

(%)1
~,(x,z)= –+”B1–T

m }m.

(86)

where al and 61 represent the geometric angles of ntholc
and sideslip, and (WJ and (W=)lrepresent the additional
lateral velocity components induced, say, by the vortox
system trailing from a wing somewhere upstream, In order
to express the lift on wing 1 in terms of simple properties of
the flow about wing 2, it is necessary that wing 2 be at zero
sideslip, thus

&=() (87)

The proper reciprocal relation for use with multiplanar
systems is given in reference 16 and is

S.1

,
UI(VJjdS=

Js
ti(vn)lm (88)

z- Z

where the area of the interzrationz extends over both sides
I of all wing surfaces, V. is he component of the perturbation

velocity normal to and directed away from the surface, and
the subscripts 1 and 2 refer to conditions on wings 1 and 2.
Since, for wings having no thickness, V. is equal and opposite
on the two sides of its surface, nnd is &rthennore propor-
tional to Z on wing component H and to p cmwing componont
V, equation (88) can be rewritten as follow~:

SS
AIA”&Z dy+

SS
Au&dx dz

H v’
.

SS hi~ldx dy+
SS

Au.&ix dz (89)

E v

Here Au refers to the difference in u on the two sides of any
surface and the subscripts H and V indicate that the int,e-

.._
$2
,111

FIGUEE 23.-&uoiform wing in foryird and reverse flow.
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grrh am to be carried over wings H and V, respectively.
In the present ~ase, simplification occurs not only because
tiz= const., and &=0, but also because it follows therefrom”
that A%= O on wing V. Thus equation (89) reduces to

‘ZJJAUW=SJAUWS(90)

H H

Now if the integral on the left side of equation (9o) is re-
written in terms of p and integrated with respect to.z, that is

SSAWJS=JJA%WY=J:(A~)TB’Y(91)
H H

whore the subscript TE refers to the values of API at the
trailing edge, and if equation (26) is recalled for the lift
including the effects of the nonlinear terms in the pressure-
velocity relation of equation (10),

J
L=p.U. ~80@TEdY .

-80
(26)

equation (9o) becomes

3=’=%fN%%@
“H

(92)

In many p~blems & varies only slowly with z. If it is

assurnecl that al is actually independent of z, equation (92)
can be simplified in the following manner:

(93)

Inasmuch as wing 2 in revemtiflow is composed of flat-plate
elements and is at zero sideslip, the circulation distribution
at the trniling edge A~TEis proportional to the span loading
1 and equation (93) can be rewritten as

‘1=J3’(*)’Y*
(94)

It is interesting to observe that this expr-ion is identical in
form with that obtained in reference 16 for planar systems
of suiiiciently high aspect ratio that the linear premure-
velocity relation can be used. It is important to remember,
however, that the presrmt application requires the wing in
revmse flow to be at zero side&p, whereas the analysis of
reference 16 requires the wing in reverse flow to be at the
same angle of sideslip as the wing in forward flow.

It is evident that equation (94) can be applied in several
different ways. One con compute the total & induced by
the vortices at the tail station, multiply by Z.& and integrab
by either analytical, numerical, or graphical merins; or one
can determine a general formula for the lift due to a single
vortex and superpose the lift contributions of all the vortices.
The latter method is of particular utility where the Zgdis-
tribution is of a common form, such as elliptic. This case,
which includes all low-aspect-ratio flat-plate wings having
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I?KIUEE 24.-& oiform wing in the presence of a single vortex.

plan forms such th~t no part of the trailing edge lies forward
of the station of maximum span, has already been treated in
referenca 16but will be included here for the sake of complete-
ness. Thus, consider the problem of determiningg the lift on
a low-aspect-ratio cruciform wing at zerd geometric angle of
attack resulting from “thepresence of an Mnite line vortax of
strength r passing through the point y= ~ and z= ~ and
extending parallel to the x axis as shown in &me 24. The
wing panels will be &onsideredto have such plan forms that
the span loading is elliptic when the wing is in flight in the
reverse direction at zero sideslip. Thus, equation (34)
yields for the wing in reverse flow

(95)

The effective angle of attack of the wing in forward flow is

(96)

Substitution of equations (95) and (96) into equation (93)
or (94) yields the following formula for the lift

{
L,= –rp.ums. –~+ - .

The lift on a wing in the vicinity of a number of such vortices
can be found by superposition. The ‘result so calculated
applies to the wing when the geometric angle of attack al is
zero. If al is not zero, an additioniil conh-ibution must be
included which is just the lift on the wing in the absence of
all adjacent vortices. For the present class of plan forms,
this contribution & can be calculated by direct application
of equation (22), that is, .
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The above result may be contrasted with that of stip
theory in which each section of the wing is assumed to act as
though it were in twodimensional flow at an angle of attack
~1. The latter assumption results in a relation for lift of a
wing in a nonuniform flow field which resembles equation
(94), except that the sprm loading iJ&, is replaced with a

“ function proportional to the local chord. Inasmuch as & is
not proportional, in general, to the local chord, it is evident
that the w of strip theory w-illusually result in error.

CONCLUDINGREMARKS

Several facets of the aerodynamics of slender cruciform-
wing and tail interference problems have been investigated
in the foregoing discussions. Formulas are given for the
computation of the loading and integrated forces on cruci-
form wings and for the determination of the lift on a tail in
an arbitrary, but known, do-wmvash field. The principal
difficulty in wing-tail interference problems resides in the de-
termination of the flow field at the tail station and stems from
the fact that the trailing vortex sheet rolls up and deforms
very rapidly behind low-aspect-ratio win~. One can always
compute the behavior of the vortex system within the frame-
work of inviscid theory, but the labor is great when a suffi-
cient number of vorticw is used to give adequate representa-
tion of the actual vortex sheets. In the present study, re-
sults are given of i cahmlation using 40 vortices, but even
this number proves insufficient to stidy the nature of the
vortex spirals at large distances behind the -wing. On the
other hand, the calculations show that at su5cient distances
from the wing most of the vorticity from each wing panel is
concentrated within a single restricted region, and these re-
sults bear out the assumption often made that the vortex
system can be represented by a much simpler model having
only four vortices. If each vortex is assigned a strength
equal to the total circulation around the associated wing
panel, and is located, at the trailing edge, at the lateral posi-
tion of the centroid of the vorticity it represents, it is shown
that the lateral positiqns of the four vortices change with dis-
tance in such a mwumr that they are in close accord with the
positions of the centroids of vorticity of the actual vortax

system at all distance9 from the wing. Consectudntlv, Jo
lateral position of each of the four vo~tices is in- rena~riably

good agreement with the lateral position of the-corresponding

vortas core at large distances from the wing, in spite of tho
fact that the 4-vortex model is clearly inadequate for repre-
senting the details of the flow at small distances from tho
wing.

Several aspects of the analysis of the behavior of vortox
wakes remain to be investigated in future studies, In the
first place, both the numerical study of the 40-vortex model
and the analytical study of the 4-vortox model are conlined to
the case of 45° bank. Although the numerical method cm
be -used for other bank angles and, of course, for simpler
models, it does not appear possible to extend the present
analytical method to other bank angles. The numerical
method is S1O-Wand cumbersome, ~owever, and there is need
for other more rapid ways for calculating the form of the
vortex system at the tail station. Also needed is a method
for estimating the form of the vortex system in the intermodi-
ate sthges of rolling up. In this range, only a part of tho
vorticity qan logically be assumed rolled up into the vortrm
cores, the remainder being in the relatively undeformed
sheet. A related problem exists even at great distances be-
hind the wing where nearly all of the vorticity is concontmtod
in the vortex cores. Replacement of the vortex cores having
finite lateral extent with line vortices of zero diameter leads
to very large errors in the induced velocities at points in the
immediate vicinity of the vortices. Inasmuch as the onorgy
method used for planar wings and described in reference 1
cannot be applied directly to cases involving banked cruci-
foti wings, there exists a need for a method for estimating
the size and velocity distribution of the vortex cores so that a
correction can be applied to the 4-vortex results. This need
is diminished somewhat by the fact that, in many cases, the
forces on the tail are not ailected by the finite size of the
vortex cores. This situation prevails whenever the vortex
cores do not touch the tail surfaces.
AMESAERONAUTICALIIABORATORY

~ATIONti ADVISORYCOmTTEE FORAERONAUTICS
MOFFETTl?LRLD,CALm., Oct. .%5,1956
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APPENDIX A -

FORCESON SLENDERPLANE-AND C13UCIFORM-WINGAND BODY COMBINATIONS

Formulas me presented in the text of this report for the
pressures and integrated forces on slender cruciform wings
These results are obtained following the procedures of
reference 10, but differ in that the effects of nonlinear terms
in the pressure-velocity relation are now properly accounted
for, Inasmuch as the inclusion of these terms also alters
the pressures on cruciform-wing-%ody combinations, and
the corrected formulas have not been given elsewhere, they
will be given briefly in this appendix.

The precise problem to be discussed is that of deterxnining
the load distribution and aepdynamic properties of slender
cruciform-wing and body combinations inclined at small
anglqs of pitch, a, nnd yaw, & The wing-body combination
is considered to consist of a slender body of revolution and
fht, pointed, low-aspect-ratio wings extending along the
continuation of the horizontal and vertieal meridian planes
of the body as shown in iigure 1. The component wings
me designated wing H and wing V, as in the case of the
wing alone discussed in the text. The plan form of wing H
is given by y= +s(z) and that of wing V by z= +t(z).
The radius of the body is, in general, a function of z and is
designated by r=~~=a(z). The anal- is confined
further to wing-body combinations having wings whose
edges me leading edges everywhere upstream from the base
~cction. To extend the solutions to other configurations,
further consideration must be given to the influence of the
vortex wake extending downstream from the trailing edge
of the wing. A brief discussion of this problem can be
found in reference 17.

ti described in the text, the perturbation velocity potential
q is related to the total velocity potential according to
equation (1), and satisfies the Prandtl-Cilauert equation
given in equation (2). The general solution for slender
bodies of arbitrary cross section is given in equations (3)
through (6). For the present muciform-wing and body
combination, the solution must satisfy the boundary condi-
tions giveri by equation (13) on the surface of the body of
revolution and by equations (14) and (15) on the horizontal

z
A I1

and vertical wings. Inasmuch as attention is confined to
wings of zero thiclme.w, the boundary conditions on the
wing simplify, somewhat betiuse h is zero. Once p is
determined in this way, the pressure can be calculated
directly by using the relationship given in equation (10).

Following equation (7), the solutions for p in the vicinity
of the wing-body combination can be written as

W=W+9(+ (Al)
where ~ represents the solution of the two-dimensional
Ikplace equation for the specified boundary conditions and
g(z) is a function of z alone defined by equations (3) and
(4), or explicitly by equations (8) and (9). The function
q is independent of Mach number, all of the influence being
confined to the function g(z). As in the case of the wing
alone, ~ can be divided into components mch representing
~ for a simpler problem. These components are illustrated
schematically in figure 25. Component pd represents the
potential for two-dimem’ional incompressible flow about the
wing-body cross section Wdergoing uniform translation in
the direction of the negative z axis and is “

where the sign is positive in the upper half-plane 0<13<r
and negative in the lower half-plane 7r<o<2T. The ax-
prwwionfor m is

%=+~{[(l+~),cosm+tf+)]+

[“’(1-$Y+~4c0s’2e+’4‘
q’+N+$)~c’’s2el%7 ‘Umm ‘A3)

z
1
1

J-b

Y2’.’Y0 + Yb + Vc

FImmm 2S.-Addition of potenthds for cmciform wing-body combination
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where the sign is positive in the left half-plane r/2< O<3m/2
and negative
Component q.
incompressible
origin und is

in the right half-plane (—7r/2<o<m/2).
represents the potential for two-dimensional
flow associated with a source situated at the

(A4)

where r=~m. The perturbation velocity potential
for the flow field about a cruciform-wing-body combination
inclined in both pitch and yaw is

P=%+wl+%+9(~) (A5)

Through application of the above equations to the pres-
sure-velo$ity relationship of equation (10), the following
e.spressions are found for the lifting differential pressures
(lower minus upper) on the horizontal wing and body

p) .’@E(’+)+’:%($+’-’$)]+
!?B

JF3R

‘-@@(+$)~

JH=$lwa= ‘A’)
Similarly, the lateral differential pressure (port minus star-
board) on the vertical wing and body are given by

~4 2

)4@3:Q-2

Jmw%w%H” ‘A’)

The total lift and side force exert?d on a complete cruci-
form-wigg and body combination can be det.orminod by
integrating the loading over the entire surface area. It is
often convenient to carry out the integration by fiat
evaluating the lift and side force on one spanwise strip
and then integrating these elemental forces over the lmgth
of the wing-body combination, thus

dL
0s

—— .
‘[’(’-$+$)1 ‘A’O)

‘So& dy=~h 8
0h~-8.~

d
(7 J ‘“ ~dz=-2T19 .$

Zy =-t. [’2(’++$)1 ‘A”)
and

p(l-$+;)J}

(A12)

(A13)

where the subscripts O and 1 in the integrated results refer
to the values of the bracketed quantities at z= O md x=1,
respectively. If the wing-body ‘combination
the nose, the bracketed quantities vanish at
&pressions for lift and side force reduce to

:=2”W1-$+:)11

:=-%’[’2(1-$+$)11

is pointed at
x=O, and the

(Al’)

(Alb)

The above expressions for the loadiugs and forces indicwte
that there is a complete correspondence of the expressionsfor
lift and sideforce, and that the lift is independent of the angle
of yaw and the side force is independent of the angle of rtt-
tack. Inasmuch as the pitching and yawing moments J{
and ~ about an arbitrary moment center x. are obtrdnod by
performing the following integrations

it is evident that the above statements have
counterpmts for these momenk. Although
the calculation w-illnot be tiven here, it can

(A1o)

(A17)

corresponding
the details of
be shown fur-

ther for crucifoi%n-wing-bod~ combin~tions having identicrd
horizontal- and vertical-wing panels that the resultant latorrd
force ~~~ is independent of the angle of bank, and thnt
the total rolling moment is zero for all anglea of bank.

Equations (A14) and (A15) show that the lift and siclo
force on a slender pointed wing-body combination depencl
on the geometry of only the base section and not of the phm
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form. This result is in conformity with the more general
intcgral relation of equation (26) obtained using momentum
methods, but not with the result obtained @ reference 10
using the linear pressure-velocity relation. The latter
nnrdysis(herebeing superseded) indicates that equation (A14)
is the proper expression for the lift of a whg-body combhia-
tion consisting of a low-aspect-ratio triangular wing mounted

“ on n slender pointed body that is cylindrical along the wing
root, but not, for instance, for a conical wing-body combina-
tion. The conical configuration is of particular interest be-
cause of the esistence of a supersonic conical-flow solution
(ref. 18), and because it has recently been suggested (e. g.,
rcf, 19) that that result be used to check the applicability of
approximate solutions. Comparison reveals, however, that
the rcmlts of reference 18 do not agree with equation (A14),
but check the slender-body results of reference. 10. The
wqdnnation is that the linear pressurtivelocity relation is
used in the supersonic cofical-flow solution, and that the
latter results agree with those given here if the effects of the
additional terms in the pressure-velocity relation are in-
cluded in the analysis.
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TABLE I.—CALCULATEDLATEIWL POSITIONS0)? 40 VORTJC~SAT VARIOUSDISTANCESBEHIND A SLENDER
CRUCIFORMWCNGAT 46° BANK

K+g .
Vortaxnumbm

—

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 m
.— — — -— — — . — — — . — — . .
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o. !il)76 0.3704 O.@m’ am O.mw 0.6312

am && 0..5367 0. m o. 631? 0.6916 am 0. m
O.I?4H6 a6&m am am -o. m -a3704 -0.4697 -o. E367 -a m -a 63L2 -a W6 -a m -a m -k E

1 f 0.2078 0.37W 4672 Sma
z’ O.aml 0.3703 :m : S4 &!07 :% ha25

6023 0. mm o.m21 0.6%36 a. 2074 am am o. m o. m
a.m43 am

0.6306 _; $K# ~a&a am 0.7134
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